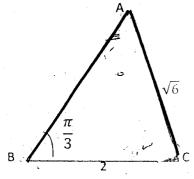
Prof. Ben Amor Mounir

Devoir de contrôle nº5 (144)

2 time science 1

Lyrée secondaire Majida It


2003-2009

Exercice nº1

Dans cette figure, on donne un triangle ABC tel que :

$$AC = \sqrt{6}$$
, $BC = 2$ et $A\hat{B}C = \frac{\pi}{3}$

- 1) Calculer $\sin B \hat{A} C$, en déduire les valeurs des angles BAC et ACB en radione
- 2) a- Vérifier que $(1 + \sqrt{3})^2 = 4 + 2\sqrt{3}$. b-Sachant que $\cos\left(\frac{3n}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$ Calculer AB.
- 3) Calculer l'air du triangle ABC et le rayon de son cercle circonscrit.

Exercice n°2

Soit $(U_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q>0 telle que $U_2=2$ et $U_4=10$.

- 1)a) Calculer sa raison q et son premier terme U_0 .
 - b) Vérifier que $U_n = \frac{2}{9} (3)^n$.
- 2) Donner le rang du terme 4374.
- 3) Soit $S_n = U_0 + U_1 + \dots + U_{n+1}$
- a) Exprimer S_n en fonction de n .
- b) Déduire $S = U_0 + U_1 + \cdots + U_7$

Exercice n°3On considère les points A(-4, -1); B(1,3) et C(-2,1) dans un repère $(o, \vec{\iota}, \vec{\jmath})$.

- 1) Déterminer une équation cartésienne de (AB).
- 2) Déterminer une équation cartésienne de Δ perpendiculaire à (AC) passant par B
- 3) Soient les droites Δ_m : (m-1)x + (2m+1)y 3m = 0, $m \in IR$.
 - a)Déterminer m pour que Δ_m soit invariante par la translation du vecteur \tilde{t} .
 - b) Déterminer m pour que Δ_m soit parallèle à la droite (AB).

